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Nitric oxide (NO) is a messenger molecule implicated in a
number of physiological processe30ne of the mechanisms by
which NO affects cellular processes is through direct interaction
with cellular proteins by nitrosylation and nitrosation reactions.
Sitrosation of cysteine residues to produgaitrosothiols (RS-
NOs) is one of the most important NO-mediated modifications of

proteins®# Recently, there have been several reports suggesting

that the interactions of NO (or NO-derived species) with the SeH
groups of selenoproteins are also involved in NO-mediated cellular
functions® 11 For example, glutathione peroxidase (GPx), an

essential selenium-containing antioxidant enzyme, is inactivated by

treatment with RSNO as well as by endogenous®N®presumably
through selenocysteir®enitrosation’.? In contrast to the extensive
studies undertaken orsitrosothiols, however, no chemical

information about their selenium analogues has been available to

date, despite their potential physiological importaHcEo elucidate
the mechanism of NO-mediated modification of selenoproteins,
reference data o8enitrosated species are indispensable. Here we
report the synthesis of a stablenitrosated derivative of an
organoselenol, Senitrososelenol (RSeNO), and its crystal structure
and spectral properties. Th&enitrososelenol can be formed by
direct transnitrosation from RSNO to a selenol, while it is reduced
to the selenol by treatment with dithiothreitol, as proposed in the
hypothetical pathway for the NO-mediated inactivation of GPx.
Because the seleniummitrogen bond of the SeNO group is
considered to be weaker than the suifaitrogen bond of the
S—NO group, it is likely thatSenitrososelenols are more labile
thanS-itrosothiols, which are already notorious for their very facile
bimolecular decomposition to give disulfides and NO. Previously
we reported thaS-itrosothiols can have a long lifetime if their
bimolecular decomposition is sterically suppressed by the den-
drimer-type substituents;!*including a Bpg grouff-*> shown in
Figure 1. This methodology is also expected to be effective for the
stabilization ofSenitrososelenolsSeNitrososelenoR was prepared
by nitrosation of selenal bearing a Bpqg groulf Treatment ofL
with an excess of ethyl nitrite in degassed CP®d to the
guantitative formation oSenitrososelenoR, which was isolated
as reddish purple crystals with a melting point of 130132.5°C
(decomp) by recrystallization from toluenbexane in 89% yield
(Figure 1)1% Formation of2 was also observed in the reaction of
1 with S-itrosoglutathione (GSNO) (vide infraé®eNitrososelenol
2 is sensitive to atmospheric oxygen but stable toward water. In
CDCl;, no decomposition 02 was observed after 1 week at room
temperature. The structure @fwas determined byH, 1C, and
'Se NMR spectroscopy, UWis and IR spectroscopy, and X-ray
crystallographic analysis.
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Figure 1. Synthesis and reactions 8enitrososelenoR.
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Figure 2. ORTEP drawing ofSenitrososelenol2 (30% probability).
Selected bond lengths (A), bond angles (deg), and a torsion angle (deg):
O(1)-N(1), 1.162(6); N(1)}-Se(1), 2.107(6); Se(3)C(1), 1.915(3); O(Ly
N(1)—Se(1), 116.2(3); N(£ySe(1)-C(1), 94.88(16); O(tyN(1)—Se(1)-
C(1), —2.2(5). In the crystalline state, there is a rotational disorder of the
N—O moiety around the €Se bond in the ratio of 0.81:0.19, and only the
major component is shown. One molecule of benzene is included in the
asymmetric unit, which is omitted for clarity.

Figure 2 shows the crystal structure ®fwith selected bond
lengths, bond angles, and a torsion angle. Thel$éond length
(2.107(6) A) and the NO bond length (1.162(6) A) are consistent
with a selenium-nitrogen single bond and a nitrogeoxygen
double bond. The observed bond lengths and angles are in good
agreement with the calculated values for a m@&kshitrososelenol,
CsHsSeNO (Se-N, 2.097 A; N-0O, 1.172 A; O-N—Se, 115.8),
obtained by density functional theory (DFT) calculation at the
B3LYP/6-31G(d) level’ indicating that the structure around the
SeNO functionality oR is not affected by the two bulky substituents
at the ortho positions. The-€Se-N—O linkage adopts only the
syn conformation, which is similar to the aroma8enitrosothiols
structurally characterized so &8

The7’Se NMR spectrum (CDG) of 2 shows a signal at 2229
ppm, about 2100 ppm lower field than that of selehdt 135),
suggesting the strong magnetic deshielding effect of the NO moiety.
Such an extreme low-field shift was also found in theoretical
calculation. By the gauge-including atomic orbital (GIAO) calcula-
tion at the B3LYP/6-311G(3d)[Se]:6-311G(d)[C,O,N,H]//B3LYP/
6-31G(d) level, the chemical shift @was estimated to bé& 2449
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Figure 3. UV—vis spectral change during the reaction of seleh¢l.6
M) with GSNO (1.8 M) in THFwater (4 mL, THF:water= 3:1 v/v).
Inset: magnified view for the range of 46G80 nm.

ppm. The UV-vis spectrum oR shows the absorption maximum
at 485 nm ¢ 150) in chloroform. The time-dependent DFT
calculation for GHsSeNO at the B3LYP/6-31G(2d)//B3LYP/
6-31G(d) level shows two characteristic bands at 495 nswitn
transition) and 711 nmu(—s* transition), although the intensity

of the latter is nearly zero. The observed 485 nm band can be

reasonably assigned to the-m* transition, which shows a
bathochromic shift of about 140 nm compared to that of the
correspondings-nitrosothiol, BpgSNO 3) (345 nm)!* The 7—a*
transition band of2 is considered to be so weak that it could

tively reducedSenitrososelenoP to the parent selendl (Figure

1). The reaction o with an excess of 1-butanethiol led to the
guantitative formation of selenenyl sulfide(Figure 1)?° These
results coincide with the proposed mechanism for the NO-mediated
GPx inactivation described above, and strongly suggest the possible
involvement of Senitrosation of selenoproteins by NO-derived
species in redox regulation of cellular functions.

Modification of antioxidant enzymes such as GPx by reactive
nitrogen species has been suggested as playing a pivotal role in
NO-related cellular signaling cascades. The st&haitrososelenol
obtained in this study is expected to serve as a reference compound
for identification of yet unconfirmedSenitrosated species in
proteins and understanding of their physiological functions.
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